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CLASSICAL AND QUANTUM INTEGRABILITY

MAURICIO D. GARAY AND DUCO VAN STRATEN

Abstract. It is a well-known problem to decide if a classical hamilton-

ian system that is integrable, in the Liouville sense, can be quantised

to a quantum integrable system. We identify the obstructions to do so,

and show that the obstructions vanish under certain conditions.
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Introduction

Consider the complex symplectic manifold T ∗Cn ≃ C2n and let

f = (f1, . . . , fn) : C
2n → C

n

be a polynomial Liouville integrable system, that is, the fi’s are polynomials for
which the Poisson brackets vanish pairwise:

{fi, fj} = 0, 1 6 i, j 6 n

and df1 ∧ df2 ∧ . . . ∧ dfn is not identically equal to zero.
A basic question is the following: does there exist a quantum integrable system

whose classical limit is the given classical integrable system?
In other words, we ask for the existence of commuting ~-differential operators

F1, . . . , Fn whose principal symbols are the given f1, . . . , fn. This question makes
sense not only in the polynomial context, but also in the holomorphic and in the
real C∞ setting. We consider the algebraic and holomorphic problems but the C∞

case could be treated as well with the same method, and it is in fact simpler.
In this paper, we attach to f a complex C •

f on C2n, together with certain anomaly

classes χ ∈ H2(C •

f ) that are obstructions to extend the quantisation to the next
order in ~. The quantisation problem can be solved provided that all these classes
vanish. These classes were introduced by the second author in an unpublished work
from which this paper originated [28].

There is a close relation between the complex C •

f and the relative de Rham
complex Ω•

f . We show that the anomaly classes are of topological nature. This
enables us to prove a GAGA type result: the algebraic quantisation problem can
be solved provided that the corresponding formal or analytic problem can be solved.
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Using this result, we show that the anomalies vanish under reasonable topological
conditions on the map f . For general involutive systems, one can also construct
obstruction classes for the quantisation but, in that case, we were not able to prove
or disprove any quantisation property.

There is a considerable literature on the subject of quantisation, going back to
early days of quantum mechanics, but we will not try to give a complete overview
in this paper. Quantum integrability is regarded sometimes as a remarkable fact
and sometimes— based on heuristic arguments— as the general rule [14], [24]. It
seems that the results of this paper can be extended mutatis mutandis to Poisson
manifolds but we did not check all details. Related results can also be found
in [4], [23].

1. The Quantisation Theorem

1.1. The Heisenberg quantisation. Let K be a field and consider a flat defor-

mation A over K[[~]] of a commutative K-algebra B

0→ A
~
−→ A→ A/~A ≃ B → 0

which is complete in the sense that

A = lim←−A/~
lA

Such an algebra A will be called a quantisation of B.
The deformationQ := R[[~]] of the polynomial ring R := C[q, p] := C[q1, . . . , qn,

p1, . . . , pn] is an associative algebra for the normal product

f ⋆ g := e
~

P
i
∂pi

∂q′
i f(q, p)g(q′, p′)

∣∣
(q=q′1, p=p′)

.

It defines a flat deformation of R over C[[~]]. We have

q ⋆ p = qp, p ⋆ q = qp+ ~.

The algebra Q may be regarded as an algebra of differential operators. Indeed, the
relation

p ⋆ q − q ⋆ p = ~

shows that the map

Q→ C[x, ~∂x][[~]], (q, p) 7→ (x, ~∂x)

is an isomorphism of algebras. This quantisation will be called the Heisenberg

quantisation of R.
We shall also consider the Moyal–Weyl quantisation defined by the product

f ⋆ g := e
~

P
i

1

2
(∂pi

∂q′
i
−∂qi

∂p′

i
)
f(q, p)g(q′, p′)

∣∣
(q=q′, p=p′)

.

It gives a more symmetric formula, namely,

q ⋆ p = qp−
~

2
, p ⋆ q = qp+

~

2
.

These two quantisations define isomorphic non-commutative algebras.
The formula for the normal and Moyal–Weyl products define quantisations for

the following rings in a similar way:
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(1) the ring Ran := C{q1, . . . , qn, p1, . . . , pn} of holomorphic function germs
at the origin in T ∗Cn ,

(2) the ring Γ(U, OT∗C) of holomorphic functions in an open subset U ⊂ T ∗Cn,
(3) the polynomial ring R[q, p] := R[q1, . . . , qn, p1, . . . , pn],
(4) the ring R∞ := C∞

2n of C∞ function germs at the origin in T ∗
R

n,
(5) the ring Γ(U, C∞

T∗Rn) of C∞ functions in an open subset U ⊂ T ∗Rn.

These rings are stalks or global section of sheaves, the notion of quantisation
admits a straightforward variant for sheaves.

These notions are of course classical, going back to the early days of quantum
mechanics when Born, Heisenberg, Jordan and Dirac proposed to replace the com-
mutative algebra of hamiltonian mechanics by the non-commutative one over the
Heisenberg algebra [3], [7] (see also [27]). The idea was pursued by Moyal and lead
Bayen–Flato–Fronsdal–Lichnerowicz–Sternheimer to the general idea of star prod-
ucts on symplectic manifolds [2], [21]. The classical link between star products and
non-commutative algebras was re-phrased into modern terminology by Deligne [6].

1.2. The quantisation problem. We consider the following problem: let A be a

quantisation of an algebra B and let f1, . . . , fk be elements in the ring B. Under

which condition can we find commuting elements F1, . . . , Fk in A such that Fi = fi

(mod ~)?
In such a situation, we call F1, . . . , Fk a quantisation of f1, . . . , fk. From the

point of view of classical quantum mechanics, this would mean if it is possible to
measure simultaneously the quantities F1, . . . , Fk.

There is an obvious obstruction to perform a quantisation of f1, . . . , fk that we
shall now explain. The canonical projection

σ : A→ A/~A = B

is called the principal symbol. The result of commuting two elements F, G ∈ A is
divisible by ~ and its class mod ~2 only depends on the symbols f = σ(F ) and
g = σ(G). In this way, one obtains a well-defined Poisson algebra structure { · , · }
on B by putting

{f, g} :=
1

~
[F, G] (mod ~)

Recall that this means that this bracket is antisymmetric, satisfies the Jacobi iden-
tity and is a derivation on B in both variables. For the Heisenberg quantisation,
we get the standard formula

{f, g} =

n∑

i=1

∂pi
f∂qi

g − ∂qi
f∂pi

g.

Definition 1. A collection of elements f = (f1, . . . , fk) of a Poisson algebra B is
called an involutive system if the elements Poisson-commute pairwise.

Obviously the answer to our problem can be positive only for involutive systems.
Therefore we reformulate our original question into the following: let A be a quan-

tisation of an algebra B and let f = (f1, . . . , fk) be an involutive system in the

ring B. Under which conditions can we find commuting elements F1, . . . , Fk in A
such that Fi = fi (mod ~)?
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The obstruction for performing this quantisation lies in some cohomology space,
that we shall now describe.

1.3. The complex C •

f . If M is a module over an algebra T and D1, . . . , Dk :
M →M are commuting T -linear mappings, one can form a “Koszul complex”.

The terms of the complex are Kj := M ⊗
∧j
T k and the differential is defined

by

δ(m⊗ v) :=

k∑

i=1

Di(m)⊗ (ei ∧ v), v ∈M ⊗T

∧
•

T k,

where e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1) denotes the canonical basis in T k.
Now, let f = (f1, . . . , fk) be an involutive system in a Poisson algebra B over

C and T = C[t1, . . . , tk] the polynomial ring in k variables. We apply the above
contruction for M = B, together with the T -module structure given by the ring
monomorphism

T → B, ti 7→ fi

and the T -linear mappings Di = {fi, · }. This gives a complex that we will denote
by C •

f . We use the identification

B ⊗T

∧
•

T k ≃
∧

•

Bk

induced by the multiplication mapping.
Note that the differential in the complex (C •

f , δ) is, as a general rule, only T -
linear and not B-linear. As a result, the above cohomology groups have, in general,
only the structure of T -modules and not of B-modules. This structure is defined
by

ti[m] := [fim],

where [m] denotes the cohomology class of the cocycle m.

Notation. The cohomology module of the complex (C •

f , δ) will be denoted by

Hp(f).

It is readily seen that the module H0(f) consists of functions commuting with
the components of f and that H1(f) is the space of infinitesimal deformations of
B over T [ε]/(ε2) modulo deformations which are Poisson-trivial [10], [26].

Similar considerations hold for the rings R[q, p], Ran, R∞, Γ(U, OT∗Cn), and
Γ(U, C∞

T∗Rn).

1.4. The case of involutive systems over R = C[q, p]. Let us now consider
the previous construction for the particular case of the Poisson algebra B = R =
C[q1, . . . , qn, p1, . . . , pn]. In this case, a more intrinsic description of the complex
can be given as follows.

Denote by

ΘT := DerC(T, T ) ≃

k⊕

i=1

T∂ti
≃ T k
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the module of vector fields on Ck = Spec(T ). There is a unique differential δ
extending the map δh = {h, · } so that the graded algebra f∗

∧
•

ΘT becomes a
differential graded algebra. The map

f∗ΘT → C1
f , ∂ti

7→ ei

extends to an isomorphism of differential graded algebra between f∗
∧

•

ΘT and C •

f .

1.5. Statement of the theorem. We put R = C[q1, . . . , qn, p1, . . . , pn].

Definition 2. An involutive system f = (f1, . . . , fn), fi ∈ R, is called an inte-
grable system if df1 ∧ . . . ∧ dfn is not identically zero.

Remark that, for an integrable system, the generic fibres of the morphism

f : Spec(R)→ Spec(T ),

are smooth of dimension n. The main result of this paper is the following theorem.

Theorem 1. Let f = (f1, . . . , fn), fi ∈ R be an integrable system. If the module

H2(f) is torsion free, then the integrable system f is quantisable, i.e., there exists

commuting elements F1, . . . , Fn ∈ Q = R[[~]] such that Fi = fi (mod ~).

Analogous results hold for the rings R[q, p], Ran, R∞, Γ(U, OT∗Cn), Γ(U, C∞
T∗Rn).

It seems that the module H2(f) is torsion free under mild assumption but no
result in this direction is known for the moment. From our point view, this is the
main problem concerning lagrangian deformation theory.

A priori, the quantisation of an integrable system leads to infinite series in ~. In
the classical examples, the integrable system is quasi-homogeneous and the weight
of the obstruction that we will construct decreases at each step. The quantisation
is then given by polynomials in ~ and not by infinite series.1

2. Anomaly Classes and Topological Obstructions

2.1. Liftings and quantisation. Let us come back to the general problem of
quantising an involutive system given a quantisation A of a K-algebra B.

We have seen that a quantisation of B induces a Poisson algebra structure on
it. The K[[~]]-algebra A is itself a non-commutative Poisson algebra, the Poisson
bracket being defined by the formula

{F, G} =
1

~
[F, G].

In fact, the non-commutative algebras obtained by higher order truncations

Al := A/~l+1A, l > 0

also admit Poisson algebra structures. The Poisson bracket in Al is defined by

{σl(F ), σl(G)} = σl

(1

~
[F, G]

)
,

where σl : A→ Al denotes the canonical projection. In the sequel, we abuse nota-
tions and denote these different Poisson brackets in the same way.

1This was pointed out to us by A. Chervov and M. Semmel.
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From the flatness property, one obtains exact sequences

0→ B → Al+1 → Al → 0

induced by the identification

~
l+1Al+1 ≃ B~

l+1/~l+2 ≃ B.

We will use this identification without further mention.
We try to construct quantisations of an involutive system f = (f1, . . . , fk) order

for order in ~.

Definition 3. An l-lifting of an involutive system f = (f1, . . . , fk), fi ∈ B is a
collection of Poisson commuting elements F = (F1, . . . , Fk), Fi ∈ Al such that the
principal symbol of Fi is fi. The lifting F is called extendable if there exists an
(l + 1)-lifting which projects to F .

2.2. Cohomological obstruction to quantisation. Consider an arbitrary l-
lifting F of our involutive mapping f . Take any elements G1, . . . , Gk ∈ Al+1

which project to F1, . . . , Fk. As the Fi’s Poisson commute in Al, we have

{Gi, Gj} = χij~
l+1.

Proposition 1. The element χ(G) :=
∑
χijei ∧ ej has the following properties

(1) it defines a 2-cocycle in the complex C •

f ,

(2) its cohomology class depends only on the l-lifting F and not on the choice

of G.

Proof. Write

χ(G) =
∑

i,j>0

χijei ∧ ej , χij ∈ B

with ~l+1χij = {Gi, Gj}.
We have

δχ(G) =
∑

i,j,l>0

vijlei ∧ ej ∧ el

with ~l+1vijl = ~l+1{χij , fl} = {{Gi, Gj}, Gl}. Therefore the Jacobi identity
implies that vijl + vlij + vjli = 0. This proves that χ is a cocycle.

Now, take G̃1, . . . , G̃k ∈ Al+1 which also project to F1, . . . , Fl, then G̃j =

Gj +~l+1mj for some m1, . . . , mk ∈ B. Consider the 2-cocycle χ(G̃) =
∑
χ̃ijei∧ej

associated to G̃. One then has:

{Gi + ~
l+1mi, Gj + ~

l+1mj} = χij~
l+1 + ~

l+1({fi, mj}+ {mi, fj}).

We get the equality χ(G̃) = χ(G) + δ(m), where m =
∑k

i=1miei = (m1, . . . , mk),
therefore the cohomology class of χ(G) depends only on F and not on G. This
concludes the proof of the proposition. �

Definition 4. The cohomology class χF := [χ(G)] ∈ H2(f) is called the anomaly
class associated to the l-lifting F .

Summing up our construction one has the following result.
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Proposition 2. Let f = (f1, . . . , fk) be an involutive map and F an l-lifting

F = (F1, . . . , Fk) of f

(i) the lifing F extends if and only if the anomaly class χF ∈ H
2(f) vanishes.

(ii) if m, G are such that χF = χ(G) = δm, then the mapping

Ker(C1
f

δ
−→ C2

f )→ Al+1, n 7→ G− ~
l+1(m+ n)

induces a bijection between the set of liftings and the set of degree 1 cocycles.

Proof. Take G1, . . . , Gk ∈ Al+1 which project to F1, . . . , Fk ∈ Al. The anomaly
class χF ∈ H

2(f) vanishes, thus there exists

m = (m1, . . . , mk) ∈ Bk

such that χ(G) = δm. The map G − ~l+1m is an (l + 1)-lifting of f . Conversely
assume that the l-lifting F admits an (l+1)-lifting G, then χ(G) = 0 and a fortiori
its cohomology class vanishes. �

2.3. Pyramidal mappings. To conclude this section, let us mention a finiteness
result concerning the complex C •

f in analytic geometry, it will not be used in the
sequel.

Recall that a lagrangian variety L ⊂ M on a symplectic manifold M is a re-
duced analytic space of pure dimension n such that the symplectic form vanishes
on the smooth part of L. The smooth fibres of an integrable systems are lagrangian
manifolds.

Denote by v1, . . . , vn the hamiltonian vector fields of f1, . . . , fn and put

Mk(f) = {x ∈M : dimSpan{v1(x), . . . , vn(x)} = k}.

Definition 5 [26]. An integrable system is called pyramidal if

dimMk(f) 6 k.

If n = 1, then being pyramidal is equivalent to having isolated critical points.
There is a natural notion of a standard representative of a germ of a pyramidal

mapping: it is a pyramidal Stein representative f : M → S such that the fibres of
f are transverse to the boundary of M and all spheres centred at the origin are
transverse to the special fibre.

Theorem 2 [10], [26]. The direct image sheaves of the complex C •

f associated to a

standard representative of a pyramidal integrable holomorphic mapping are coherent

and the mapping obtained by restriction to the origin

(Rkf∗C
•

f )0 → Hk(f) = Hk(C •

f,0)

is an isomorphism.

We do not know if conversely f is pyramidal provided that the modules Hk(f)
are of finite type.



526 M. GARAY AND D. VAN STRATEN

3. Algebraic and Formal Quantisations

3.1. The analytisation procedure. To any scheme X over C there is an associ-
ated analytic space Xan. The underlying sets X and Xan are the same, but while
X is equipped with the Zariski topology, the space Xan is endowed with the usual
metric topology. Any algebraic coherent sheaf F on X gives rise to a sheaf F ′ on
Xan. The stalks of F and F ′ at each point are equal. Following Serre [25], we
define

Fan := F ′ ⊗OXan ,

where the tensor product is taken over O′
X .

Proposition 3 [25]. (a) The mapping from the category of algebraic coherent

sheaves to that of analytic coherent sheaves

Coh(X)→ Coh(Xan)

is an exact functor ;
(b) the homomorphism F ′ → Fan is injective.

3.2. GAGA principle for quantisation. Consider the algebra R=C[q1, . . . , qn,
p1, . . . , pn] and the ring T =C[t1, . . . , tn]. Any polynomial mapping f=(f1, . . . , fn)
defines a morphism

f : C
2n := Spec(R)→ C

n := Spec(T ),

where C
2n and C

n are endowed with the Zariski topology. Now, by the analyti-
sation procedure, any polynomial defines an analytic function that we denote by
fan. There is a corresponding analytic Koszul complex attached to fan whose
cohomology we denote by H •(fan). In this way, we get a mapping

H •(f)→ H •(fan), χ 7→ χan.

To prove Theorem 1, we use the following GAGA type result

Proposition 4. Let f = (f1, . . . , fn), fi ∈ R = C[q1, . . . , qn, p1, . . . , pn], be an

integrable system such that the module H2(f) is torsion free. For any anomaly class

[χ] ∈ H2(f) the following assertions are equivalent :

(i) the class χ vanishes in H2(f);
(ii) the class χan vanishes in H2(fan).

In Sections 3.3 and 3.4, we prove this proposition by reduction to standard
GAGA type results due in this case to Deligne, based on resolution of singularities
[5, Theorem 6.13] (see also [11], [15], [25]).

3.3. Relation with the de Rham complex. We keep the same notations.
The de Rham complex Ω•

R/T is defined by

Ω0
R/T := R, Ω1

R/T := Ω1
R/f

∗Ω1
T , Ωk

R/T :=
∧k Ω1

R/T

and the differential is the usual exterior differential.
An element of Ωk

R/T is therefore an algebraic k-form in the q, p variables defined

modulo forms of the type df1 ∧ α1 + · · ·+ dfn ∧ αn:

Ωk
R/T = Ωk

R/f
∗Ω1

T ∧ Ωk−1
R , for k > 0, Ω0

R/T = R.
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We define a morphism of differential graded algebras

ϕ• : (Ω•

R/T , d)→ (C •

f , δ).

The interior product

v 7→ ivω

of a vector field v with the symplectic form ω :=
∑n

i=1 dqi ∧ dpi induces an iso-
morphism between the space of one-forms Ω1

R and that of vector fields ΘR :=
DerC(R, R).

The hamiltonian vector field associated to a function H ∈ R is the field associated
to dH ∈ Ω1

R, it is given by the formula

n∑

i=1

∂pi
H∂qi

− ∂qi
H∂pi

.

Denote by v1, . . . , vn the hamiltonian vector fields of the functions f1, . . . , fn, the
mapping

Ω1
R/T → C1

f ≃ R⊗T ΘT , α 7→ (iv1
α, . . . , ivn

α)

induces a morphism of graded algebras

ϕk :
∧k

Ω1
R/T = Ωk

R/T →
∧k

C1
f = Ck

f .

It is readily checked that these maps commute with differentials. This defines the
map

ϕ• : (Ω•

R/T , d)→ (C •

f , δ).

The relative de Rham complex and the complex C •

f can both be sheafified to

complexes (C •

f , δ), (Ω•

f , d) on the affine space C2n = Spec(R).

Proposition 5. If the morphism f : Spec(R)→ Spec(T ) is smooth at a point then

the map ϕ• : (Ω•

f , d)→ (C •

f , δ) is an isomorphism of differential graded algebras at

this point.

Proof. As ϕ• is a map of differential graded algebras and ϕ0 = Id, it is sufficient to
show that ϕ1 is an isomorphism. Let x be a smooth point of f . Consider the map
from the absolute de Rham complex to C1

f :

Ω1
C2n, x → C1

f, x, α 7→ (iv1
α, . . . , ivn

α).

The module Ω1
C2n, x is free with basis dq1, . . . , dqn, dp1, . . . , dpn. In this basis, the

mapping ϕ1 is identified with the Jacobian matrix of f , therefore by the jacobian
criterion for smoothness, this map is surjective.

As the dfi are contained in the kernel of this map, this shows that ϕ1 is surjective.
As the modules Ω1

f, x and C1
f, x are free of the same rank, this shows that ϕ1 is an

isomorphism and proves the proposition. �
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3.4. Proof of Proposition 4. A theorem due to Deligne states that there exists
a dense Zariski open subset S ⊂ Cn such that [5, Theorem 6.13] (see also [11]):

(i) the map g defined by restricting f above S is smooth;
(ii) there is a canonical isomorphism (Rkg∗Ω

•)an ≡ Rkgan
∗ Ω•,an

g ;

(iii) the direct image sheaf Rkg∗C is locally constant.

There is an isomorphism

Hk(f) ≃ H
k(C2n, C •

f ),

induced by the vanishing of higher cohomology groups for the coherent sheaves over
an affine scheme, and

H
k(C2n, C •

f ) = Γ(Cn, R
kf∗C

•

f ).

Proposition 5 gives an isomorphism

C •

g ≃ Ω•

g.

The situation is summarised by the chain of maps (where we use the notation ∼
for isomorphisms and →֒ for monomorphisms)

Hk(f)
∼
−→ H

k(C2n, C •

f )
∼
−→ Γ(Cn, R

kf∗C
•

f )
r
−→ Γ(S, R

kg∗C
•

g )
∼
−→ Γ(S, R

kg∗Ω
•

g) →֒ Γ(San, R
kgan

∗ C⊗Oan
S ),

where r denotes the restriction. For any point s ∈ S, we get an evaluation map

Γ(San, R
kgan

∗ C⊗Oan
S )→ Hk(f−1(s), C);

thus, the last term in the sequence can be interpreted as the sheaf of sections of
the cohomology bundle

⋃

s∈S

Hk(f−1(s), C)→ S.

Conclusion: To each element of Hk(f) is associated a section of the cohomology
bundle.

The image of an anomaly class χ will be a called the associated topological

anomaly, denoted χtop. If H2(f) is a torsion free module, there is no section
supported on a proper subset and the map r is also injective, so we get the

Proposition 6. Let f = (f1, . . . , fn), fi ∈ R = C[q1, . . . , qn, p1, . . . , pn] be an

integrable system. If the module H2(f) is torsion free then the following assertions

are equivalent:

(i) the anomaly class χ ∈ H2(f) vanishes ;
(ii) the topological anomaly χtop ∈ Γ(S, R

kgan
∗ C)⊗Oan

S vanishes.

This proposition implies Proposition 4.



CLASSICAL AND QUANTUM INTEGRABILITY 529

3.5. Examples. To give a clear idea of the isomorphisms involved in the previous
subsection, let us consider two examples.

Take n = 1, f = pq, the complexes (C •

f , δ), (Ω•

f , d) have respectively two and
three terms:

OC2

d

ϕ0=Id

Ω1
f

d

ϕ1

Ω2
f

0

C0
f ≃ OC2

δ
C1

f ≃ OC2 0.

The hamiltonian vector field of f is

X := q∂q − p∂p.

Therefore, the map ϕ1 sends the one-form p dq ∈ Γ(C2, Ω1
f ) to the cocycle

p dq.X = pq ∈ Γ(C2, C1
f ).

The section of the cohomology bundle associated to pq ∈ C1
f is obtained by re-

stricting the class of the form p dq to the fibres of f . The section associated to
1 = pq/pq ∈ C1

f is obtained by restricting the class of the meromorphic form

p dq/pq = dq/q to the fibres of f . It is not contained in the image of ϕ1.
The class [dq/q] generates the first de Rham cohomology group of the fibre,

which is in this case one dimensional. Of course any multiple of [dq/q], such as
[p dq] = t[dq/q], also generates this group. There is no H2(f) group for n = 1 and
the problem of quantising an integrable system is in this case empty.

Take now n = 2 and f1 = p1q1, f2 = p2q2. The complex (C •

f , δ) has three terms
and we obtain a diagram

OC4

d

ϕ0=Id

Ω1
f

ϕ1

d
Ω2

f

ϕ2

C0
f ≃ OC4

δ
C1

f ≃ O
2
C4

δ
C2

f ≃ OC4 .

The hamiltonian vector field of fi is

Xi := qi∂qi
− pi∂pi

.

The map ϕ1 sends the one-form p1 dq1 ∈ Γ(C4, Ω1
f ) to the cocycle

(p1 dq1.X1, p2 dq2.X1) = (p1q1, 0) ∈ Γ(C4, C1
f )

and p2 dq2 to (0, p2q2). Thus, the sections of the cohomology bundle associated to
the cocycles

(1, 0), (0, 1) ∈ Γ(C4, C1
f )

are obtained by restricting the cohomology classes of the forms dq1/q1 and dq2/q2
to the fibres of f .

The classes [dq1/q1] and [dq2/q2] generate the first de Rham cohomology group
of the fibre, which is in this case of dimension two.

The section of the cohomology bundle associated to (1, 0)∧ (0, 1) ∈ Γ(C4, C2
f) is

obtained by restricting the cohomology class of the form dq1∧dq2/q1q2 to the fibres
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of f . The corresponding class generates the second de Rham cohomology group,
which is of dimension 1.

The integrable system f = (f1, f2) is obviously quantisable: just take F1 = f1,
F2 = f2.

3.6. Formal quantisation. Recall that if X ⊂ Y is a closed subscheme defined

by an ideal sheaf I, then the formal neighborhood Ŷ of X in Y (also called the
completion of Y along X) consists of the topological space X together with the
structure sheaf

ObY := lim
←−
OY /I

n.

A ringed spaced obtained by completing a scheme is called a formal scheme. In the
analytic situation, we get a similar definition of formal analytic spaces.

Given an integrable system f = (f1, . . . , fn), fi ∈ R = C[q, p]. For any s =
(s1, s2, . . . , sn) ∈ C

n, we can consider the formal neighborhood of the fibre f−1(s)
in C2n. Hence we consider the completion

R̂s = lim
←−

R/In
s ,

where Is is the ideal generated by f1 − s1, . . . , fn − sn. We denote by gs ∈ R̂s the
image of g ∈ R.

The ring R̂s carries a Poisson structure induced by that ofR and any quantisation
of R induces a quantisation of its completion. Let us consider the normal product

on R̂s[[~]].

Proposition 7. Let f = (f1, . . . , fn), fi ∈ R = C[q1, . . . , qn, p1, . . . , pn] be an

integrable system. Let χ be a anomaly class associated to a lifting

F = (F1, . . . , Fn), Fi ∈ R[[~]]/~n+1R[[~]].

If the module H2(f) is torsion free then the following assertions are equivalent:

(i) the anomaly class χ ∈ H2(f) vanishes ;
(ii) there exists a Zariski dense subset S ⊂ Cn such that Fs = (Fs,1, . . . , Fs,n),

Fs,i ∈ R̂s[[~]]/~n+1R̂s[[~]] can be extended for s ∈ S.

By Proposition 6(i) is equivalent to the vanishing of the topological anomaly χtop.
As the topological anomaly is a section of a torsion free module and S is Zariski
dense in Cn, it vanishes provided that the anomaly associated to Fs vanishes for
any s ∈ S. By Proposition 2, this is equivalent to the existence of an extension.

An analoguous statement holds in the analytic case.
Remark that if we take S as in Section 3.4, then Deligne’s theorem implies that

condition (ii) is equivalent to the existence of one point s ∈ S over which Fs can
be extended.

4. Darboux–Weinstein Normal Forms

4.1. General remarks. We introduce symplectic geometry over an arbitrary base
in the algebraic context and prove a relative version of the Darboux–Weinstein
theorem [29]. We will see that the graph of an integrable system defines a lagrangian
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variety and that the Arnold–Liouville theorem is a consequence of the relative
Darboux–Weinstein theorem.

In the C∞ case, the relative Darboux–Weinstein theorem can be obtained along
the lines of Weinstein’s proof. There is however an important difference between
the C∞ case and the algebraic case: if X is a smooth compact submanifold of
euclidean space Rn then a sufficiently small tubular neighbourhood of X in Rn is
isomorphic to a neighbourhood of its zero section on the normal bundle. This is
the content of the tubular neighbourhood theorem and this theorem is needed to
prove the Darboux–Weinstein theorem. A similar theorem is true for relatively
compact Stein manifolds with sufficiently regular boundary. However, for general
Stein manifolds in complex geometry as well as for affine manifolds in algebraic
geometry, the statement is of course wrong and this is the reason for which the
algebraic case is more difficult.

Consider, for instance, the pencil of plane cubics

Ca = {(x, y) ∈ C
2 : y2 + x3 + ax+ a = 0}.

The modulus of the corresponding compactified curve varies according to the value
of a and therefore the affine curves Ca are not isomorphic as complex analytic man-
ifolds. If a neighbourhood of Ca, a 6= 0 in C2 were isomorphic to a neighbourhood
of its zero section in the normal bundle, even for the metric topology on C2, then
the curve Cb would be isomorphic to Ca for b sufficiently close to a. One overcomes
this difficulty by passing to formal geometry [13].

4.2. The algebraic tubular neighbourhood theorem. We fix a scheme S over
a field K of characteristic zero and consider the category of schemes over S.

Proposition 8. Let X and M be smooth S-schemes and X → M be a closed

embedding. If X is affine over S then the completion of M along X is isomorphic

to the completion of the normal space to X along its zero-section.

Any algebraic vector bundle E → X defines a sheaf of sections which is locally
free. The structure sheaf of E is related to the sheaf of sections of the bundle via
the formula

OE ≃ Sym(F∗), Sym(F∗) :=
⊕

n>0

(
F∗ ⊗s · · · ⊗s F

∗

︸ ︷︷ ︸
n

)
,

Sym(−) denotes the symmetric tensor algebra and F∗ = HomOX
(F , OX).

Denote by I the ideal sheaf defining X in M . The sheaf of sections of the normal
bundle to X in M

N → X

is given by (I/I2)∗. If X is smooth then I/I2 is locally free and the standard
embedding

I/I2 → ((I/I2)∗)∗

is an isomorphism. Therefore the structure sheaf of the total space to the normal
bundle of X is isomorphic to the symmetric algebra Sym(I/I2). By identifying the
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symmetric product with symmetric tensors via the mapping

a1 ⊗s · · · ⊗s an 7→
1

n!

∑

σ∈Sn

aσ(1) ⊗ · · · ⊗ aσ(n),

we get an isomorphism of sheaves

Sym(I/I2) ≃
⊕

n>0

In/In+1.

(This isomorphism is the only where we shall use the property that we are working
over a field of characteristic zero.)

This shows that by identifying X with the zero section of its normal bundle,

the completions M̂ and N̂ of M and N along X define isomorphic sheaves of OS-
modules on X . To prove the proposition, we have to show that the global sections
on X of these sheaves are isomorphic algebras.

Assume first that X is a complete intersection generated by f1, . . . , fn and fix
k > 0. Let S = Spec(A) and consider the algebra consisting of polynomials in n
variables with coefficients in A:

A[ε] := A⊗K K[ε1, . . . , εn].

Denote by M the ideal generated by the coordinates ε1, . . . , εn and define the
algebra Ak := A[ε]/Mk. Finally put

R = Γ(X, OM ), I := Γ(X, I),

so that M = Spec(R) and X = Spec(R/I). The morphism

Ak → R/Ik, εi 7→ fi

endows the ring R/Ik of an algebra structure over Ak. By the jacobian criterion for
smoothness, this algebra is formally smooth. By the definition of formal smooth-
ness, there is mapping

σ : R/Ik → R/Ik+1

which is a right-inverse to the canonical projection [12](see also [19]). This mappings
splits the exact sequence of algebras

0→ Ik/Ik+1 → R/Ik+1 → R/Ik → 0,

and gives a decomposition into a graded sum of algebras

R/Ik+1 ≃ R/Ik ⊕ Ik/Ik+1.

This proves the proposition in case X is a complete intersection.
To treat the general case, consider the quotient sheaf on X :

Fk := OM/Ik.

Cover X by open affine neighbourhoods Xi such that Xi is a complete intersection.
As Xi is affine, we get an exact sequence

0→ Γ(Xi, Ik)→ Γ(Xi, OM )→ Γ(Xi, Fk)→ 0;

therefore on each Xi, we can chose a splitting

σi : Γ(Xi, Fk)→ Γ(Xi, Fk+1)
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of the exact sequence

0→ Γ(Xi, I
k/Ik+1)→ Γ(Xi, Fk+1)→ Γ(Xi, Fk)→ 0.

The difference σij = σi − σj is a global section of Der(Fk, I
k/Ik+1) over Xij =

Xi ∩Xj. In this way we constructed a Čech cocycle

(σij) ∈ H
1(X, Der(Fk, I

k/Ik+1)).

As the scheme X is affine and the sheaf Der(Fk, I
k/Ik+1)) is coherent, this Čech

cohomology group vanishes, thus the Čech-cocycle is a coboundary:

(σij) = δ(αi).

The maps σi − αi on Xi are equal on Xij and therefore define a global splitting.
This proves the proposition.

4.3. Relative symplectic geometry. Let M be an S-scheme

M
π
−→ S.

Definition 6. An S-symplectic scheme (M, ω) is a scheme (resp. formal scheme,
analytic space) together with a closed relative 2-form ω ∈ Ω2

M/S which induces a

sheaf isomorphism

ΘM/S → Ω1
M/S , v 7→ ivω.

Two symplectic S-schemes M, M ′ are symplectomorphic if there is an isomor-
phism from M to M ′ which sends one symplectic form to the other.

A subscheme over S in M is called lagrangian if it is defined by an involutive
ideal sheaf and if it has half the dimension of M over S.

The symplectic form vanishes on the smooth locus of lagrangian subschemes. To
see it denote by x ∈ Spec(R) a smooth closed point of the lagrangian subscheme.
Let f1, . . . , fn generate the ideal of the scheme at x and Xi the hamiltonian vector
field associated to fi. The vectorsXi(x)’s form a basis of sections the tangent plane
to

L = f̂−1(s), s ∈ Spec(T )

at the point x and

ω(Xi, Xj) = {fi, fj} = 0.

This proves the assertion.
The fibres of an integrable system

f = (f1, . . . , fn) : Spec(R)→ Spec(T ),

R = C[q1, . . . , qn, p1, . . . , pn], T = C[t1, . . . , tn] which are of dimension n are
lagrangian (henceforth the generic fibres are lagrangian). The symplectic structure
on Spec(R) induces a symplectic structure on M := Spec(R) × Spec(T ) over S :=
Spec(T ), the graph of f is lagrangian subscheme over S.

Similar considerations hold for formal schemes and analytic schemes.
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4.4. The relative Darboux–Weinstein theorem.

Proposition 9. Let i : X → M be a closed embedding between smooth formal S-

schemes with S = Spec(C[[t1, . . . , tk]]). Let ωj, j = 1, 2, be two S-symplectic forms

on M . If X is affine over S then the following conditions are equivalent :

(i) the de Rham cohomology classes of ω1 and ω2 on the fibre above 0 ∈ S are

equal ;
(ii) there is a symplectomorphism of M which sends ω1 to ω2 and is the identity

on X.

Corollary. Any smooth affine formal integrable system

f : X → S, S = Spec(C[[t1, . . . , tn]])

is symplectomorphic over S to the projection

L× S → S, L = f−1(0),

xowhere L× S is endowed with the symplectic form df1 ∧ dt1 + · · ·+ dfn ∧ dtn.

Proof. The symplectic structure on X induces a symplectic on M := X×S over S.
The graph of the integrable system defines a lagrangian manifold with special fibre
L the normal bundle of which is trivial. Therefore, the S-scheme X is isomorphic
to the product

L× S, L = f−1(0)

endowed with the projection on S. By the previous proposition, it is also symplec-
tomorphic to it. This proves the corollary. �

4.5. Proof of Proposition 9. That (ii) implies (i) is obvious, let us prove that
(i) implies (ii).

Consider the n infinitesimal neighbourhood Mn of M . It is the ringed space
supported on the special fibre L with structure sheaf

OMn
= OM/In+1,

where I is the ideal sheaf of L. We prove the proposition by induction on n. For
n = 0, there is nothing to prove. Take n > 0 and assume that the forms ω1 and
ω2 are equal on Mn−1. The vanishing of higher cohomology groups for a coherent
sheaf on an affine scheme, induces a canonical isomorphism

H
•(Mn, Ω•

Mn/Sn
) ≃ H •(Γ(Mn, Ω•

Mn/Sn
)).

As S is complete and M is smooth, the sheaf Ω•

M/S is a resolution of OS . Therefore,

we get an isomorphism

H
•(M, Ω•

M/S) ≃ H •

DR(L, C)⊗ C[[t1, . . . , tn]].

This shows the existence of a one-form α such that

ω1 − ω2 = dα, α|Mn−1
= 0.

Denote by Xg the hamiltonian vector field of g ∈ OMn
. As α vanishes on Mn−1,

the map

OMn
→ OMn

, g 7→ g + α ·Xg
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is an automorphism. It sends the symplectic form ω1 to ω2. This proves the
proposition.

4.6. Action-angle vector fields. We continue the study of the relation between
the relative Darboux theorem and the Arnold–Liouville theorem [1], [17], [20].

Definition 7. Let X be a symplectic scheme (resp. formal symplectic scheme). A
set of pairwise commuting vector fields

X1, . . . , Xn, Y1, . . . , Yn ∈ Γ(X, Der(OX , OX))

such that ω(Xi, Yj) = δij , i, j = 1, . . . , n, is called a set of action-angle vector
fields.

Proposition 10. Let

f : X → S, S = Spec(C[[t]])

be a smooth formal affine integrable system. Denote by Xi the hamiltonian field

of fi. There exists vector fields Y1, . . . , Yn such that the Xi, Yi’s form a set of

action-angle vector fields.

Using the corollary to Proposition 9, we may assume that

(i) X = L× S with L = f−1(0);
(ii) the morphism f is the projection to S;
(iii) the symplectic form is given by df1 ∧ dt1 + · · ·+ dfn ∧ dtn.

Having made these assumptions we take Yi = ∂ti
. This concludes the proof of the

proposition.

4.7. Action-angle connections. Consider a set of action-angle vector fields σ =
{X1, . . . , Yn}. Denote by

π : TM →M

the standard projection. Denote by L• the Lie derivative. The vector fields
X1, . . . , Yn define a flat connection on the sheaf of sections of the cotangent bundle
to M

∇Xi
σ := LXi

σ, ∇Yi
σ := LYi

σ,

where σ is a section of the holomorphic cotangent bundle, i.e., a holomorphic one-
form defined over some neighbourhood in M . The times of the vector fields provide
flat local coordinates for this connection. This connection is symplectic, that is,

∇ω = 0

(This flat connection defines a trivial representation of the fundamental group of
M .)
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5. Quantisation of Formal Integrable Systems

5.1. Action-angle star products. To a set σ = {X1, . . . , Yn} of action-angle
vectors fields, we associate the action-angle star product

f ⋆σ g =
∑

i,k

1

k!

(
~

2

)k

(Xk
i f Y

k
i g −X

k
i g Y

k
i f),

where Xk· and Y k· denote respectively the k-th Lie derivative along X and Y .
For instance, the Moyal–Weyl bracket is the action-angle star product associated

to the action-angle vector fields

Xi = ∂pi
, Yi = ∂qi

.

Proposition 11. The action-angle star products on a smooth symplectic analytic

space are all equivalent, i.e., they define isomorphic sheaves of non-commutative

algebras.

We will show that the Fedosov class of action angle star products is equal to
the symplectic form. Then, the proposition will follow from classical results [8,
Theorem 4.3], and [22, Theorem A.12] (see also [9], [23], [30] and [16] for the more
general case of a Poisson manifold). To be self contained, we give a complete proof.
Unlike these authors, we will rather use the tangent bundle and not its completion
nor the associated Fedosov’s Weyl bundle.

5.2. Step one: the Fedosov product. Let (V, ω) be a symplectic vector space.
As the symplectic form induces an isomorphism between V and V ∗, there is a
pairing on V ∗ dual to the symplectic pairing that we denote in the same way.

This symplectic pairing we define a quantisation of the ring of polynomials S(V ∗)
by putting

a ⋆ b = ab+
~

2
ω(a, b), a, b ∈ V ∗,

and extending it to the symmetric powers of V ∗.
Now, if (M, ω) is a symplectic manifold then each tangent plane toM is endowed

with a linear symplectic structure. In this way, we quantise the ring of functions
on the tangent bundle TM of a symplectic manifold M . The restriction to M of
the sheaf (OTM [[~]], ⋆) gives a sheaf of non-commutative algebras (OTM|M [[~]], ⋆).

For instance if M = C2 = {(x, y)} with the symplectic form dx∧ dy and TM =
C4 = {(x, y, ξ, η)} then the only non-commutative products among linear forms
are

ξ ⋆ η = ξη +
~

2
, η ⋆ ξ = ξη −

~

2
,

so the only non-trivial commutator is [ξ, η] = ~.

5.3. Step two: diagonal functions. Consider a symplectic connection ∇ and
denote by

π : TM →M

the standard projection and by L• the Lie derivative. We identify M with the zero
section of its tangent bundle.
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There is a canonical morphism

ϕ : Ω1
M → OTM|M

which identifies differential one-forms with functions on TM wich are linear on the
fibres. We define the sheaf

L := Imϕ.

By applying Leibniz rule, the connection induced by ∇ defined on L extends to a
connection ∂ on the sheaf OTM|M . If α is a one form, then

ϕ(∇Xα) = ∂X(ϕ(α))

for any vector field X on M .
The tangent space T(x,v)(TM) at (x, v) ∈ TM sits in a natural exact sequence

0→ TxM → T(x,v)(TM)
π∗−→ TxM → 0,

where we refer to the left copy of TxM as the vertical subspace, the kernel of the
derivative of the projection π at the point (x, v).

In fact, the connection ∇ gives a splitting of the exact sequence which induces
a decomposition of T(x,v)(TM) into the direct sum of the vertical and horizontal
subspaces.

There is also a canonical connection δ on the sheaf OTM|M [[~]] defined by the
vertical derivatives

δXf = LX′′f,

where X ′′ is the vertical lift of a vector field X on M .
Assume furthermore that ∇ is flat then the connection

D = ∂ + δ

on the sheaf OTM|M [[~]] satisfies D2 = 0. It is called the Fedosov connection

associated to ∇.
(If ∇ is not flat the construction of the associated Fedosov connection D is

slightly more involved.)
The subsheaf D∇ ⊂ OTM|M [[~]] of horizontal sections for the connection D will

be called the sheaf of diagonal functions associated to ∇. It is defined by

Γ(U, D∇) := {f ∈ OTM|M [[~]] : Df = 0}

for any open subset U ⊂M . It is, in fact, a sheaf of non-commutative algebras.
It is easy to write down these diagonal functions explicitely in local coordinates.

Consider flat Darboux coordinates

x1, . . . , xn, y1, . . . , yn

for the connection ∇, defined on some open neighbourhood U ⊂M .
The tangent bundle to M has then coordinates x1, . . . , yn together with

ξ1, . . . , ξn, η1, . . . , ηn.

In these local coordinates, we have

∂ =

n∑

i=1

(∂xi
⊗ dxi + ∂yi

⊗ dyi)
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and

δ =

n∑

i=1

(∂ξi
⊗ dxi + ∂ηi

⊗ dyi).

therefore the diagonal functions over U are of the type

f(x, y, ξ, η) = f0(x− ξ, y − η)

with f0 ∈ Γ(U, OM [[~]]).
There is an isomorphism of sheaves

ψ : OM [[~]]→ D∇

which assigns to a function f0 the unique diagonal function f whose restriction to
the zero section coincides with f0. Via this isomorphism, we get a star product ⋆∆

on OM defined by:

ψ(f ⋆∇ g) := ψ(f) ⋆ ψ(g).

5.4. Action angle star products. Assume now that the connection ∇ is asso-
ciated to a set

σ = {X1, X2, . . . , Xn, Y1, Y2, . . . , Yn}

of action-angle vector fields. There are two star products on OM : the action-angle
star product ⋆σ associated to σ and the star product ⋆∇ induced by the connection.
Let us show that these star products are the same.

The diagonal functions can be locally expressed in explicit form. Let X ′
1, . . . , Y

′
n

be the horizontal vector fields which lift X1, . . . , Yn. By mapping the action-angle
vector fields into the vertical subspace TxM ⊂ T(x,v)M , we obtain vertical vector
fields X ′′

1 , . . . , Y
′′
n on TM .

We have

f ∈ Γ(U, D∇) ⇐⇒

{
X ′

if +X ′′
i f = 0,

Y ′
i f + Y ′′

i f = 0
∀i = 1, . . . , n

for any open subset U ⊂M .
The vector fields X ′

i, X
′′
i , Y

′
i , Y

′′
i are derivations of the non-commutative alge-

bras of (OTM|M [[~]], ⋆).
The times of the vector fields X1, . . . , Xn, Y1, . . . , Yn induce flat local coordi-

nates

x1, . . . , xn, y1, . . . , yn, ξ1, . . . , ξn, η1, . . . , ηn

on TM as above. In these local coordinates, we have

X ′
i = ∂xi

, X ′′
i = ∂ξi

, Y ′
i = ∂yi

, Y ′′
i = ∂ηi

.

The mapping of sheaves

ψ : (OM [[~]], ⋆σ)→ (D∇, ⋆∇)

which assigns to a function f0 the unique diagonal function f , whose restriction to
the zero section coincides with f0 is a an isomorphism of non-commutative algebras.
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X'

X''

X' + X"  

X

integral 
curve

M

TM

π

To see it consider local coordinates in TM as above. The linear forms yj , xi ∈
Γ(U, OM [[~]]) are mapped via ϕ to the linear forms yj − ηj , xi − ξi ∈ Γ(U, D∇).
We have

xi ⋆σ yj = xiyj + ~δij

and

(xi − ξi) ⋆ (yj − ηj) = (xi − ξi)(yj − ηj) + ~δij .

5.5. The diagonal resolution. Let us keep the same notation and denote by
Ω•(D) the de Rham complex associated to the flat connection (OTM|M [[~]], D)

restricted to M . It is a complex of sheaves with terms Ωi
M ⊗OTM|M [[~]] and the

differential defined by

δi : Ωi ⊗OTM|M → Ωi+1 ⊗OTM|M ,

α⊗ f 7→ dα⊗ f + (−1)iα⊗Df.

A local computation shows that this complex is a resolution of the sheaf D∇.
Indeed the vector subspace

Sym(L) ⊂ OTM|M [[~]]

is a dense vector subspace which is graded by the degree, and in each graded part
the de Rham complex complex associated to D is just the usual de Rham complex
of M with values in C[[~]]. The image of δ is closed (see, e.g., [18, Proposition 1.1]).
It contains a dense subset, it is therefore surjective.

Proposition 12. If M is a Stein manifold then the complex of global sections

0→ Γ(M, OTM|M )→ Γ(M, Ω1
M (D))→ · · · → Γ(M, Ωn

M (D))→ 0

is a resolution of Γ(M, D∇).
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As the complex Ω•

M (D) defines a resolution of the sheaf D∇, we have a canonical
isomorphism

Hi(M, D∇) ≈ H
i(M, Ω•

M (D))

As a sheaf of abelian groups, the sheaf D∇ is isomorphic to OM , the vanishing of
the higher order coherent cohomologies on a Stein manifold induce a isomorphisms
shows that

H
i(M, Ω•

M (D)) = 0, i > 0.

Finally as M is Stein these hypercohomology groups are computed by global sec-
tions. This proves the proposition.

5.6. Step three: construction of the isomorphism. Let ∇, ∇′ be two flat
symplectic connections on the cotangent sheaf Ω1

M [[~]]. As we saw previously,
these connections induce two Fedosov connections D, D′ on the sheaf OTM [[~]].
The difference D −D′ is a one-form in TM with value in C[[~]]:

D −D′ ∈ Γ(TM, Ω1
TM [[~]])

As D and D′ are flat connections this one-form is closed and therefore the connec-
tion

Dt = D + t(D −D′)

on TM is also flat for any t ∈ C.
(In local coordinates, a connection is flat if it is given by a connection matrix

A such that dA + A ∧ A = 0. For line bundles, this condition, which is in general
quadratic, reduces to the linear one dA = 0.)

The manifold M is equipped with a symplectic structure, therefore the fibres of
the projection

π : TM →M

also carry a symplectic structure and thus a Poisson bracket that we denote by
{ · , · }. In Darboux local coordinates (x, y, ξ, η), we have

{f, g} :=

n∑

i=1

∂ξi
f ∂ηi

g − ∂ξi
g ∂ηi

f.

Lemma. The one-form α = D − D′ is of the form α = (1/~)[ · , γ], where γ ∈
Γ(TM, Sym2(L)⊗Ω1

M ) is a differential form which is quadratic along the fibres of

π : TM →M .

Proof. The homomorphism ∇−∇′ defines a mapping in

HomOM
(Ω1

M , Ω1
M ⊗ Ω1

M )

and we have canonical isomorphisms

HomOM
(Ω1

M , Ω1
M ⊗ Ω1

M ) ≃ HomOM
(L, L ⊗ Ω1

M )

and
HomOM

(L, L ⊗ Ω1
M ) ≃ Γ(M, Hom(L, L)⊗ Ω1

M ).

As the connections ∇, ∇′ are symplectic, the one-form corresponding to ∇ − ∇′

takes values in the dual of the Lie algebra to the symplectic group, which is
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isomorphic to Sym2(L) equipped with the Poisson bracket. Thus there exists
γ ∈ Γ(M, Sym2(L) ⊗ Ω1

M ) such that

α(f) = {f, γ} =
1

~
[f, γ]

for any section f of the sheaf L. This proves the lemma. �

We now search for a one parameter family of automorphisms (ϕt) of the algebra
Γ(M, OTM|M [[~]], ⋆) such that

(ϕt)∗Dt = D0

for t sufficiently small. Differentiating with respect to t and multiplying by the
inverse of ϕt and by ~, we get the equation

[DtHt, · ] + [ · , γ] = 0,

where Ht is the hamiltonian associated to ϕt. Therefore our purpose is to find Ht

solving this equation, then by integration of the Heisenberg equations, we deduce
the automorphisms (ϕt).

As D2
t = 0, we have

Dt
d

dt
Dt +

( d

dt
Dt

)
Dt = [ · , Dtγ] = 0,

thus Dtγ = 0.
By Proposition 12, the de Rham complex of Dt is acyclic in positive degrees.

Thus, there exists Ht ∈ Γ(M, OTM|M [[~]]) such that

γ = DtHt.

This shows that there exists δ0 > 0 such that the algebras of diagonal functions
associated to D0 and Dt are isomorphic for |t| < δ0.

The same argument might be repeated starting for any initial value, that is, for
any ε ∈ [0, 1] there exists δε > 0 such that the algebras associated to Dε and Dε+t

are isomorphic for |t| < δε. This shows that the algebras associated to D0 and D1

are isomorphic and concludes the proof of the proposition.

5.7. Isomorphic liftings. Let f = (f1, . . . , fn), fi ∈ R = C[q, p] be an inte-

grable system. Let I be the ideal generated by the components of f and R̂ be the
formal completion of R along I. The Moyal–Weyl star product on R induces a star

product on R̂[[~]] and therefore a quantisation.
The morphism f induces a morphism

f̂ : Spec(R̂)→ Spec(C[[t]]).

We say that two l-liftings of f̂ are equivalent if they are conjugated by an automor-

phism of the Poisson algebra R̂[[~]]/~l+1R̂[[~]].

Proposition 13. If f̂ is smooth then all l-liftings of f̂ are equivalent.
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As L is lagrangian, by Proposition 9, this implies that the mapping

f̂ : Spec(R̂)→ Spec(C[[t]])

is symplectomorphic to the projection

π : L× Spec(C[[t]])→ Spec(C[[t]]), L = V (I),

where L× Spec(C[[t]]) is endowed with the symplectic structure

df1 ∧ dt1 + · · ·+ dfn ∧ dtn.

By Proposition 11, the star product induced on L × Spec(C[[t]]) by the Moyal–
Weyl product is isomorphic to that associated to the set of action-angle vector
fields

σ = {X1, . . . , Yn}, Yi := ∂ti
.

It is therefore sufficient to prove that all l-liftings of π are equivalent for the star-
product associated to σ.

As the Xi’s are tangent to the fibres of π, the image of π under the inclusion

R̂→ R̂[[~]]

is a quantisation of π. The projection

R̂[[~]]→ R̂[[~]]/~l+1R̂[[~]]

maps π to an l-lifting that we denote in the same way. According to Proposition 2
any other l-lifting F = (F1, . . . , Fn) of π is of the form

F1 = π1 + ~
lg1, . . . , Fn−1 = πj + ~

lgj , Fn = πn + ~
lgn,

where g = (g1, . . . , gn) ∈ C1
π is closed. As π is smooth, there is an isomorphism

C1
π ≈ Ω1

π which maps g to the closed one-form

α =

n∑

i=1

gidti.

The symplectic form induces an isomorphism between one-forms and vector fields.
We denote by ϕt be the flow at time t of the hamiltonian vector field associated to
the one-form α.

The automorphism ϕt taken at t = ~l maps the trivial l-lifting π to F . This
proves the proposition.

(If we write locally α = dH , using the star-exponential, this automorphism is
locally given by the formula

A 7→ exp⋆(~
l−1H)A exp⋆(−~

l−1H). )
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5.8. Proof of Theorem 1. Let f = (f1, . . . , fn), fi ∈ R = C[q, p] be the in-
tegrable system that we want to quantise and s = (s1, . . . , sn) a regular value of
f . Let I be the ideal of the lagrangian manifold L generated by the fi − si and

R̂ be the formal completion of R along I. The Moyal–Weyl star product on R[[~]]

induces a star product on R̂[[~]] that we denote by ⋆.
By Proposition 2, it is sufficient to prove that all the anomaly classes in R vanish.

According to Proposition 7, it is sufficient to prove that all the anomaly classes in

R̂ vanish, which means that any l-lifting

G = (G1, . . . , Gn), Gi ∈ R̂[[~]]/~l+1R̂

extends.
By Proposition 10, we may find a set of action-angle vector fields on Spec(R̂)

σ = {X1, . . . , Xn, Y1, . . . , Yn},

where Xi is the hamiltonian vector field associated to fi. These vector fields define
a star product ⋆σ.

As the Moyal–Weyl star product is the action-angle star product associated to
the action-angle vector fields

∂p1
, . . . , ∂pn

, ∂q1
, . . . , ∂qn

.

Thus, we get two different star products on the algebra R̂[[~]].
Using the corollary to Proposition 9, the integrable system f is symplectomorphic

to the formal completion at the origin to the projection

L× S → S, S = Spec(C[t1, . . . , tn])

with the symplectic form is given by df1 ∧ dt1 + · · ·+ dfn ∧ dtn. Put

Ran := lim←−Γ(U, Oan
Lan×San), U ⊃ Lan,

where U runs overs the open subset containing Lan. By Proposition 4, it is sufficient
to show that the analytic anomaly class χan ∈ Ran vanishes.

By Proposition 11, there exists an isomorphism of non-commutative algebras

ϕ : (Ran[[~]], ⋆)→ (Ran[[~]], ⋆σ).

In the algebra (Ran[[~]], ⋆σ), there is a quantisation of f given by f itself via the
embedding

Ran → Ran[[~]]

The projection

Ran[[~]]→ Ran[[~]]/~l+1Ran[[~]]

maps f to a lifting fl ∈ R
an[[~]]/~l+1Ran[[~]] which is, by Proposition 13, isomorphic

to the lifting ϕ(G). The projection of f to Ran[[~]]/~l+2Ran[[~]] defines an extension
fl+1 of fl, therefore G extends. This shows that the topological anomaly class
attached to G is trivial. By Proposition 4, this concludes the proof of the theorem.

Acknowledgement. The authors thank F. Aicardi for the picture which illus-
trates the construction of diagonal functions.
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